Аналитика Данных в бизнесе

Аналитика данных преобразует, казалось бы, бессмысленные данные в действенную информацию. Современный цифровой мир каждую минуту и ​​секунду генерирует огромные объемы данных из различных источников, включая социальные сети, датчики и онлайн-транзакции. Доступ к данным ценен, но использовать их разумно еще лучше. Именно здесь в игру вступает наука о данных в бизнесе.


лучше. Именно здесь в игру вступает наука о данных в бизнесе. В этом блоге мы рассмотрим аналитику данных и ее роль в бизнесе, обсудим использование искусственного интеллекта в аналитике данных, а также обсудим лучшие вакансии в области аналитики данных и различия между дата-сайентистами и дата-аналитиками.

euroTech Team
2024-07-10
data-science-in-business-blog-12-1716490643611423.png

Что же такое наука о данных?

Наука о данных — это пересечение математики и статистики, информатики и предметных знаний. Это процесс извлечения знаний и идей из данных и превращения их в действия.

Дата-сайентист (data scientist) - эти специалисты используют передовые методы анализа для выявления значимых шаблонов и тенденций, которые помогают организациям принимать более обоснованные решения. Их глубокое понимание данных и аналитических инструментов позволяет им преобразовывать сырую информацию в ценные знания, которые способствуют повышению эффективности и конкурентоспособности предприятий.

Data scientist-специалисты используют методы машинного обучения, моделирования и интеллектуального анализа данных для анализа и интерпретации наборов данных. Они также могут работать как со структурированными (например, базами данных), так и с неструктурированными (например, с текстом, изображениями и аудио) данными. Более того, специалисты по обработке данных могут работать в различных областях и отраслях, таких как финансы, здравоохранение, розничная торговля, производство и технологии. Вот почему также необходимы знания предметной области.

В чем разница между наукой о данных (Data Science) и аналитикой данных (Data Analytics)?

Наука о данных и аналитика данных тесно связаны между собой, но между ними есть некоторые ключевые различи

(Data science) Наука о данных — это более широкая область, которая включает в себя анализ данных. Она занимается анализом и разработкой алгоритмов, моделей машинного обучения и таких задач, как обработка больших данных.

(Data analytics) Аналитика данных имеет узкую направленность по сравнению с наукой о данных. Она дает понимание и помогает принимать решения. Однако он не исследует машинное обучение или прогнозное моделирование так глубоко, как наука о данных.

Каковы преимущества науки о данных в бизнесе?

Интеграция науки о данных в бизнес-операции дает множество преимуществ, таких как улучшение процесса принятия решений, эффективности, отношений с клиентами, разработки продуктов и услуг и общей конкурентоспособности.

  • Улучшение процесса принятия решений:

    компании могут разрабатывать более обоснованные и эффективные стратегии, анализируя данные. Это помогает им принимать более правильные решения. Например, компании могут выявлять тенденции, следить за ними и соответственно объявлять специальные предложения.

  • Повышение эффективности:

    наука о данных помогает предприятиям оптимизировать свою деятельность, выявляя недостатки и области для улучшения. Это повышает производительность и экономит деньги.

  • Разработка продуктов и услуг:

    Изучив данные о клиентах (историю покупок, поведение в Интернете, комментарии, отзывы), специалисты по обработке данных выявляют скрытые закономерности в потребностях и предпочтениях клиентов. Это позволяет предприятиям разрабатывать продукты и услуги, отвечающие потребностям целевой аудитории.

  • Улучшение качества обслуживания клиентов:

    Наука о данных может помочь компаниям понять поведение, предпочтения и потребности клиентов, что улучшает общее качество обслуживания клиентов. Предприятия могут использовать такие методы, как НЛП, чтобы анализировать комментарии клиентов и проверять, удовлетворены ли они продуктами. Это помогает им понять удовлетворенность и опыт клиентов.

  • Увеличение доходов и прибыльности:

    Наука о данных может помочь предприятиям разрабатывать новые продукты и услуги, которые лучше отвечают потребностям и предпочтениям клиентов. Например, компания может прогнозировать спрос на продукцию на основе своих исторических данных о продажах. Следовательно, компания может гарантировать наличие нужной продукции в нужных количествах, повышая эффективность и снижая затраты.

Как искусственный интеллект применяется в анализе данных?

В анализе данных искусственный интеллект (ИИ) используется для совершенствования и расширения приложений, играя ключевую роль. Искусственный интеллект вносит значительный вклад в анализ данных, совершая революцию в способах анализа и интерпретации данных. Ниже перечислены 5 из них:

  • Визуализация данных:

    ИИ может помочь в создании интерактивной визуализации данных. Такие визуализации облегчают пользователям понимание сложных данных.

  • Обнаружение мошенничества:

    Алгоритмы искусственного интеллекта могут обнаруживать мошенничество, анализируя данные на предмет необычных закономерностей. Этот процесс очень важен для мошенничества с кредитными картами или кибератак.

  • Сегментация клиентов:

    ИИ может помочь компаниям группировать клиентов по возрасту, поведению и предпочтениям. Это помогает создавать более персонализированные маркетинговые стратегии для каждой группы.

  • Прогнозируемое обслуживание:

    ИИ может анализировать данные датчиков и исторические записи технического обслуживания. Таким образом, он может предсказать, когда оборудование или техника могут выйти из строя. Это позволяет предприятиям планировать техническое обслуживание и минимизировать время простоя.

  • Обработка естественного языка:

    ИИ может анализировать текст, электронную почту и социальные сети, чтобы понять настроения клиентов. Это помогает извлекать значимые знания из неструктурированных данных.

5 лучших вакансий в области науки о данных

Пять самых популярных вакансий в области науки о данных — это специалист по данным, аналитик данных, инженер по машинному обучению, инженер по данным и бизнес-интеллект (BI) аналитик . Их основные обязанности и диапазоны заработной платы для каждой из них описаны ниже:

  • Специалист по данным:

    Специалисты по данным отвечают за обработку и анализ больших наборов данных. Они раскрывают идеи и закономерности, которые помогают организациям принимать решения на основе данных. Они используют различные методы, включая машинное обучение, статистическое моделирование и интеллектуальный анализ данных.

    По данным Indeed, средняя зарплата специалиста по данным в США составляет около 124 109 долларов в год.

  • Аналитик данных:

    Аналитики данных отвечают за сбор, организацию и анализ данных для выявления тенденций и закономерностей, поддерживающих процессы принятия решений. Они используют такие инструменты, как SQL, Excel и программное обеспечение для визуализации данных.

    Средняя зарплата аналитика данных в США составляет около 77 037 долларов в год.

  • Инженер по машинному обучению:

    Инженеры по машинному обучению отвечают за разработку и внедрение моделей машинного обучения для решения сложных проблем. Они создают и интегрируют системы машинного обучения в продукты и услуги. Они тесно сотрудничают с учеными, работающими с данными, и разработчиками программного обеспечения.

    Исследование Indeed также подчеркивает, что средняя зарплата инженера по машинному обучению в США составляет около 162 699 долларов в год.

  • Инженер по обработке данных:

    Инженеры по обработке данных создают и поддерживают системы, которые помогают передавать данные внутри компании. Они несут ответственность за эффективное и безопасное хранение и обработку данных.

    Исследование Indeed также показывает, что средняя зарплата инженера по обработке данных в США составляет около 126 889 долларов в год.

  • Бизнес-интеллект (BI) аналитик:

    Бизнес-интеллект (BI) аналитики отвечают за анализ данных и представление идей. Они поддерживают процессы принятия бизнес-решений. Они используют такие инструменты, как программное обеспечение для визуализации данных и инструменты отчетности, чтобы четко и понятно передавать сложные данные.

    По данным Indeed, средняя зарплата (BI) аналитика в США составляет около 89 657 долларов в год.

В чем разница между специалистом по данным и аналитиком данных?

Различия между специалистом по данным и аналитиком данных заключаются в их подходах, инструментах и ​​целях. Специалисты по анализу данных используют передовую математику, статистику и информатику, включая машинное обучение, для создания прогнозных моделей на основе сложных данных. А аналитики данных сосредотачиваются на выявлении тенденций, используя такие инструменты, как SQL и программное обеспечение для визуализации данных, для принятия бизнес-решений с помощью описательной аналитики. Эти различия подчеркивают уникальный вклад каждой роли в процесс принятия решений на основе данных.

Ученые, работающие с данными, должны иметь хорошее образование в области математики, статистики и информатики, поскольку они используют передовые методы, такие как машинное обучение и глубокое обучение. Они пытаются понять сложные данные и получить понимание и знания. Ученые, работающие с данными, отвечают за проектирование и внедрение сложных данных путем анализа конвейеров и разработки прогнозных моделей, которые могут поддерживать процессы принятия решений.

С другой стороны, аналитики данных не используют математику и статистику так, как это делают специалисты по анализу данных. Они анализируют данные, чтобы выявить тенденции, которые помогут принимать бизнес-решения. Они используют такие инструменты, как SQL, Excel и программное обеспечение для визуализации данных, такое как Tableau и Power BI. Они очищают, манипулируют и представляют данные, чтобы сделать их ясными и понятными. Аналитики данных фокусируются на описательной и диагностической аналитике, а не на прогнозном моделировании.

Короче говоря, наука о данных — это мощная дисциплина, которая направляет бизнес. Методы анализа данных предоставляют ценную информацию для более эффективного принятия решений, оптимизации операций и улучшения качества обслуживания клиентов. Хотя спрос на решения, основанные на данных, растет, специалисты в области обработки данных будут пользоваться большим спросом.

Если вы хотите стать частью науки о данных в деловом мире и улучшить свои навыки работы с данными, вам может помочь немало отличных ресурсов. Вы можете воспользоваться онлайн-курсами по науке о данных, программами по науке о данных, учебными центрами или программами на получение степени. Совершенствуя свои навыки в области науки о данных, вы сможете добиться успеха в этой захватывающей области.

Часто задаваемые вопросы

Каковы наиболее известные сертификаты в области науки о данных?

Некоторые из наиболее популярных и признанных сертификатов в области науки о данных:

  • IBM Data Science Professional Certificate
  • Microsoft Certified: Azure Data Scientist Associate
  • Google Data Analytics Professional Certificate
  • Coursera's Data Science Specialization
  • DataCamp’s Career Certifications for Data Analysts and Data Scientists
  • edX's Data Science Professional Certificate

Какие инструменты искусственного интеллекта наиболее популярны?

Специалисты по данным, инженеры по машинному обучению и исследователи обычно используют инструменты ИИ для создания и использования моделей ИИ и машинного обучения.

Некоторые из наиболее широко используемых инструментов искусственного интеллекта:

  • TensorFlow
  • PyTorch
  • Scikit-learn (Библиотека Python для машинного обучения)
  • Keras (библиотека нейронных сетей с открытым исходным кодом)
  • Apache Spark's MLlib (библиотека машинного обучения для распределенных вычислений)
  • Amazon SageMaker (для создания, обучения и развертывания моделей машинного обучения)
  • Microsoft Azure Machine Learning Studio (облачная платформа машинного обучения)